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Abstract
For the one-dimensional XXX model under the periodic boundary conditions,
we discuss two types of eigenvectors, regular eigenvectors which have
finite-valued rapidities satisfying the Bethe ansatz equations and non-regular
eigenvectors which are descendants of some regular eigenvectors under the
action of the SU(2) spin-lowering operator. It has been pointed out by many
authors that the non-regular eigenvectors should correspond to the Bethe ansatz
wavefunctions which have multiple infinite rapidities. However, it has not been
explicitly shown whether such a delicate limiting procedure is possible. In this
paper, we discuss it explicitly at the level of wavefunctions: we prove that
any non-regular eigenvector of the XXX model is derived from the Bethe ansatz
wavefunctions through some limit of infinite rapidities. We formulate the
regularization also in terms of the algebraic Bethe ansatz method. As an
application of infinite rapidity, we discuss the period of the spectral flow under
the twisted periodic boundary conditions.

PACS numbers: 75.10/Jm, 02.10.De, 05.50.+q

1. Introduction

The one-dimensional Heisenberg model (XXX model) under the periodic boundary conditions
is one of the fundamental models of integrable quantum spin systems [1]. Under the spin
SU(2) symmetry any eigenvector of the Hamiltonian is given by a highest weight vector or a
descendant of some highest weight vector. It has been shown by the algebraic Bethe ansatz
method [2] that any regular Bethe ansatz eigenstate of the XXX model gives a highest weight
vector [3, 4]. Let us consider the XXX Hamiltonian under the periodic boundary conditions,

H = −J

4

L∑
�=1

�σ� · �σ�+1 where �σL+1 = �σ1. (1.1)
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Here the symbol �σ� = (
σx
� , σ

y

� , σ
z
�

)
denotes the spin angular momentum operator with S = 1/2

acting on the �th site of the ring. Let us denote by the symbol �Stot the total spin operator:
�Stot = ∑L

�=1 �σ�/2. Then, it is easy to show that the Hamiltonian is invariant under the action
of the SU(2) : [H, �Stot ] = 0.

Let us introduce some notation of the coordinate Bethe ansatz [1, 5, 6]. We denote
by x1, x2, . . . , xM the coordinates of the M down-spins set in increasing order: 1 � x1 <

x2 < · · · < xM � L. Then, we define the Bethe ansatz wavefunction with M parameters
k1, k2, . . . , kM by the following:

f
(B)
M (x1, . . . , xM ; k1, . . . , kM) =

∑
P∈SM

AM(P) exp

(
i

M∑
j=1

kPjxj

)
(1.2)

where the sum is over all the permutations of M letters of the set {1, 2, . . . ,M} and the symbol
Pj denotes the action of permutation P on letter j. Here the symbolSM denotes the permutation
group of M letters. We define the amplitudes AM(P)’s of the Bethe ansatz wavefunction by

AM(P) = C ε(P )
∏

1�j<��M

exp[i(kPj + kP�)] + 1 − 2 exp(ikPj)

exp[i(kj + k�)] + 1 − 2 exp(ikj )
for P ∈ SM. (1.3)

Here the symbol ε(P ) denotes the sign of permutation P, and C is a constant. Let the symbol
|0〉 denote the vacuum state where all spins are up (M = 0). Then, we construct the following
vector from the Bethe ansatz wavefunction:

||M〉 =
∑

1�x1<x2<···<xM�L

f
(B)
M (x1, . . . , xM; k1, . . . , kM)σ−

x1
σ−
x2

. . . σ−
xM

|0〉. (1.4)

Here, the summation is over all the possible values of xj ’s given in increasing order. We
call the vector ||M〉 (1.4) with the amplitudes defined by equatoin (1.3), a formal Bethe
vector (or formal Bethe state). We recall that there is no constraint on the M parameters
k1, k2, . . . , kM . When they are generic, the formal Bethe state (1.4) is not an eigenvector of
the XXX Hamiltonian.

Now, let us consider the Bethe ansatz equations. They correspond to the periodic boundary
conditions for the Bethe ansatz wavefunction,

exp(iLkj) = (−1)M−1
M∏

�=1,��=j

exp[i(kj + k�)] + 1 − 2 exp(ikj )

exp[i(kj + k�)] + 1 − 2 exp(ik�)
for j = 1, . . . ,M. (1.5)

If all the parameters k1, k2, . . . , kM satisfy the Bethe ansatz equations, then the formal Bethe
vector ||M〉 becomes an eigenvector of the XXX Hamiltonian. Furthermore, if the kj ’s satisfy
the conditions that kj �= 0 (mod 2π) for j = 1, . . . ,M , then we call the eigenvector regular
and denote it by the symbol |M〉. It is called regular, since it is well defined as an eigenstate
given by the Bethe ansatz wavefunction. In this sense, it is also called a regular Bethe ansatz
state or a Bethe state, in short.

A regular eigenstate can lead to a series of non-highest weight eigenvectors of the SU(2)
symmetry. Let |R〉 denote a given regular eigenstate with R down-spins. Then, it is a highest
weight vector of the SU(2) symmetry with Stot = L/2 − R and Sz

tot = L/2 − R. Here we
assume that the number R should satisfy the condition 0 � R � L/2 for regular eigenvectors.
From the eigenvector |R〉, we can derive a sequence of non-highest weight eigenvectors
(S−

tot )
K |R〉 for K = 1, . . . , L − 2R. We call the series of descendant eigenstates non-regular

and denote them by

|R,K〉 = 1

K!

(
S−
tot

)K |R〉 for K = 1, . . . , L − 2R. (1.6)
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It is remarked that the eigenvectors |R,K〉’s are fundamental in the completeness of the
spectrum of the XXX model, although they are called non-regular in this paper.

The main question of this paper is how non-regular eigenvectors of the XXX model are
related to the Bethe ansatz wavefunctions. In fact, it has already been observed by Gaudin
[7] that the non-regular eigenvectors are associated with the Bethe ansatz wavefunction with
several parameters kj ’s being equal to zero. Furthermore, it was shown by Takhtajan and
Faddeev [3] that the creation operator B(v) is equivalent to the spin-lowering operator S−

tot

by sending the rapidity v to infinity (see also [8–11]). We note that for the parameter k, the
rapidity v has been defined by the relation exp(ik) = (v + i)/(v − i); rapidity v is finite if
and only if k �= 0 (mod 2π). In spite of the observations, however, it has not been clearly
shown yet whether one can construct the non-regular eigenvector |R,K〉 from the Bethe
ansatz wavefunctions for the case of general K. In the case of multiple infinite rapidities, the
limit of the wavefunction depends not only on its normalization but also on how we control
the differences among the infinite rapidities. Thus, under a naive limiting procedure, the
amplitudes of the formal Bethe state become indefinite; it can vanish or diverge depending
on the limiting procedure (for example, see [12]). Furthermore, if a set of parameters kj ’s
contains multiple zeros, then it is not clear whether the Bethe ansatz wavefunction should
vanish or not. In fact, for any given regular eigenvector, we can show that if two momenta (or
two rapidities) have the same value, then the norm of the eigenvector is given by zero. This
fact is called the ‘Pauli principle’ of the Bethe ansatz wavefunction. Thus, the question has
been non-trivial. In this paper, we make it clear. We show that there exists a certain limiting
procedure through which any non-regular eigenvector of the XXX model is derived from the
formal Bethe state.

Let us briefly explain our derivation of non-regular eigenvectors from the formal Bethe
states. We consider a given regular Bethe ansatz eigenstate |R〉 with R down-spins. It has R
rapidities v1, v2, . . . , vR , satisfying the Bethe ansatz equations for R down-spins. For a given
positive integer K, we consider the non-regular eigenstate |R,K〉. We recall that it has been
defined in equation (1.6) and is derived from |R〉. Then, we introduce an additional set of the
rapidities vR+1, . . . , vR+K as follows:

vR+j (�) = � + δj for j = 1, . . . ,K. (1.7)

Here we call the parameter � the ‘centre’ of the additional K rapidities vR+1, . . . , vR+K . We
assume that the δj’s are arbitrary non-zero parameters, which can be sent to infinity. Let us
now consider a formal Bethe vector ||R + K〉 with R + K down-spins that has R rapidities
of the given regular eigenstate |R〉 (i.e. v1, . . . , vR) together with the additional K rapidities
given by equation (1.7) (i.e. vR+1(�), . . . , vR+K(�)). We denote it by ||R,K;�〉. Then, we
can show that the vector ||R,K;�〉 becomes the non-regular eigenstate |R,K〉 by sending �

to infinity:

lim
�→∞

||R,K;�〉 = C |R,K〉. (1.8)

Here C denotes a constant. Thus, the non-regular eigenstate is derived from the Bethe ansatz
wavefunction.

We discuss only regular eigenvectors of the XXX model and their descendants which
we call non-regular eigenvectors. We do not consider other types of solutions in this paper.
In fact, it was shown that the so-called string hypothesis predicts the correct number of
appropriate solutions to the Bethe ansatz equations of the XXX model under the periodic
boundary conditions [1, 13, 14]. Although the hypothesis fails to count the particular type of
solutions, all the known numerical or analytical researches have shown that the total number
of solutions to the Bethe ansatz equations is given correctly [1, 11, 15, 16]. Thus, it is
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conjectured that all the regular eigenvectors and their descendants give the complete set of
eigenvectors of the XXX model. In fact, it is proven that the number of solutions of the Bethe
ansatz equations is given correctly for the XXX model under the twisted boundary conditions
with the generic twisting parameter [17]. It seems that the theorem does not cover the case of
the periodic boundary conditions, since it corresponds to a non-generic point of the twisting
parameter. However, the result of the paper might also shed some light on the mathematical
understanding of the string hypothesis and the number counting arguments in general, as we
discuss in section 4.

The contents of the paper consist of the following. In section 2 we give a formula
describing the action of powers of the spin-lowering operator. Then, through some examples,
we explicitly discuss the derivation of non-regular eigenvectors from formal Bethe states. It
is shown that infinite rapidities do not always satisfy the Bethe ansatz equations, although the
limit of the Bethe ansatz wavefunction satisfies the periodic boundary conditions. In section 3,
we give an explicit proof for the construction of non-regular eigenstates from the formal Bethe
states. In section 4, we briefly discuss two related topics. First, we remark that the formal
Bethe state ||M〉 is equivalent to the vector generated by the B operators on the vacuum:
B(v1) · · ·B(vM)|0〉 with the M rapidities v1, . . . , vM being generic. Then, we show that the
infinite limits of formal Bethe states should be useful when we analyse the spectral flow of
the XXX model under the twisted boundary conditions. Finally, we give some discussions in
section 5. In order to make the paper self-consistent, some appendices are provided. The
formula for the action of spin-lowering operator is proven in appendix A. Some fundamental
properties of the symmetric group are given in appendix B, which are important in section 3.
The ‘Pauli principle’ of the Bethe ansatz wavefunction is explicitly proven in appendix C.

2. Formal Bethe states and non-regular eigenstates

2.1. Non-regular eigenstates

Let us explicitly discuss the action of spin-lowering operator on arbitrary vectors with M
down-spins. For an illustration we consider the case of M = 1. Let |1) denote a vector with
one down-spin,

|1) =
L∑

x1=1

g(x1)σ
−
x1

|0〉 (2.1)

where g(x) is any given arbitrary function. By applying the spin-lowering operator
S−
tot = ∑L

j=1 σ
−
j to it, we have

S−
tot |1) =

L∑
x2=1

σ−
x2

L∑
x1

g(x1)σ
−
x1

|0〉 =
L∑

x1=1

L∑
x2=1

g(x1)σ
−
x1
σ−
x2

|0〉

=
( ∑

1�x1<x2�L

+
∑

1�x2<x1�L

)
g(x1)σ

−
x1
σ−
x2

|0〉

=
∑

1�x1<x2�L

(g(x1) + g(x2) )σ
−
x1
σ−
x2

|0〉

=
∑

1�x1<x2�L

( ∑
1�j�2

g(xj )

)
σ−
x1
σ−
x2

|0〉. (2.2)

Here we note that
(
σ−
x

)2 |0〉 = 0.
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We can generalize the expression (2.2). Let us denote by the symbol |M) a vector with
M down-spins:

|M) =
∑

1�x1<x2<···<xM�L

g(x1, x2, . . . , xM) σ−
x1
σ−
x2

· · · σ−
xM

|0〉 (2.3)

where g(x1, x2, . . . , xM) is an arbitrary function of xj ’s. Then, it is clear that any vector with
M down-spins can be considered as a vector |M) with some function g(x1, x2, . . . , xM). Now,
we introduce the formula

1

K!

(
S−
tot

)K |M) =
∑

1�x1<···<xM+K�L

( ∑
1�j1<···<jM�M+K

g(xj1 , . . . , xjM )

)
σ−
x1

· · · σ−
xM+K

|0〉.

(2.4)

We note that the expression (2.2) corresponds to the case M = K = 1. An explicit proof of
formula (2.4) is given in appendix A. In section 2.3, we consider the special case of K = 2
and M = 1, which is given in the following:

1

2

(
S−
tot

)2 |1) =
∑

1�x1<x2<x3�L

∑
1�j�3

g(xj )σ
−
x1
σ−
x2
σ−
x3

|0〉

=
∑

1�x1<x2<x3�L

(g(x1) + g(x2) + g(x3)) σ
−
x1
σ−
x2
σ−
x3

|0〉. (2.5)

Here we note that M + K = 1 + 2 = 3.
Let us consider a regular eigenstate |R〉 with R down-spins and the non-regular eigenstate

|R,K〉 given by equation (1.6). We recall that |R〉 is a highest weight vector of the SU(2) with
S = L/2 − R and Sz = L/2 − R. By applying the formula (2.4) to the definition (1.6) of the
non-regular eigenvector, it is explicitly expressed in terms of the Bethe ansatz wavefunctions,

|R,K〉 =
∑

1�x1<···<xR+K�L

( ∑
1�j1<···<jR�R+K

f
(B)

R (xj1 , . . . , xjR )

)
σ−
x1

· · ·σ−
xR+K

|0〉. (2.6)

Here we recall that the function f
(B)
R (x1, · · · xR; k1, . . . , kM) is the Bethe ansatz wavefunction

defined in equation (1.2), where the kj’s satisfy the Bethe ansatz equations.

2.2. Amplitudes of formal Bethe states

Let us recall the relation between rapidity vj and parameter kj :

exp(ikj ) = vj + i

vj − i
for j = 1, . . . ,M. (2.7)

In terms of rapidities, the Bethe ansatz equations are given by(
vj + i

vj − i

)L

=
M∏

�=1,��=j

(
vj − v� + 2i

vj − v� − 2i

)
for j = 1, . . . ,M. (2.8)

The amplitudes AM(P)’s defined in equation (1.3) are given by

AM(P) [v1, . . . , vM ] = ε(P )
∏

1�j<k�M

vPj − vPk + 2i

vj − vk + 2i
. (2.9)

Here, the dependence of the amplitude AM(P) on rapidities v1, . . . , vM is explicitly expressed
in the bracket [· · ·]. Here we note that the expression (1.3) of the amplitude AM(P) can be
explicitly proven.
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Let us now introduce a useful formula for expressing the amplitudes of the Bethe ansatz
wavefunction. We denote by the symbol H(x) the Heaviside step function defined by
H(x) = 1 for x > 0, and H(x) = 0 otherwise. Then, we can show that the amplitudes
AM(P)’s given in equation (2.9) are expressed by

AM(P) =
∏

1�j<k�M

(
vj − vk − 2i

vj − vk + 2i

)H(P−1j−P−1k)

. (2.10)

We prove the expression (2.10) in section 3.
For an illustration, we consider the amplitudes AM(P)’s for the case M = 3. Let us

express AM(P) by AP 1P 2···PM . Then, they are given as follows:

A123 = 1 A132 = v2 − v3 − 2i

v2 − v3 + 2i
A213 = v1 − v2 − 2i

v1 − v2 + 2i

A231 =
(
v1 − v2 − 2i

v1 − v2 + 2i

)(
v1 − v3 − 2i

v1 − v3 + 2i

)
(2.11)

A312 =
(
v1 − v3 − 2i

v1 − v3 + 2i

)(
v2 − v3 − 2i

v2 − v3 + 2i

)

A321 =
(
v1 − v2 − 2i

v1 − v2 + 2i

)(
v1 − v3 − 2i

v1 − v3 + 2i

)(
v2 − v3 − 2i

v2 − v3 + 2i

)
.

2.3. Formal Bethe states with additional infinite rapidities

Let us discuss some examples of the Bethe ansatz wavefunctions with additional rapidities.
We first consider the case of three down-spins with R = 1 and K = 2, i.e., the formal
Bethe state ||1, 2;�〉. Here, v2 and v3 are additional rapidities defined by equation (1.7):
v2 = � + δ1, v3 = � + δ2. We assume that δ1 and δ2 are some constants. We recall that v1 is
the rapidity of the state |1〉 and it satisfies the Bethe ansatz equation for M = 1.

Let us denote the difference δ1 − δ2 by $. For simplicity, we assume that δ1 = −δ2.
Then, the additional rapidities are given by v2 = � + $/2 and v3 = � − $/2. Substituting
the rapidities v1, v2 and v3 into the amplitudes in (2.11), we have

A123(�) = 1 A132(�) = $ − 2i

$ + 2i
A213(�) = v1 − � − $/2 − 2i

v1 − � − $/2 + 2i

A231(�) =
(
v1 − � − $/2 − 2i

v1 − � − $/2 + 2i

)(
v1 − � + $/2 − 2i

v1 − � + $/2 + 2i

)
(2.12)

A312(�) =
(
v1 − � + $/2 − 2i

v1 − � + $/2 + 2i

)(
$ − 2i

$ + 2i

)

A321(�) =
(
v1 − � − $/2 − 2i

v1 − � − $/2 + 2i

)(
v1 − � + $/2 − 2i

v1 − � + $/2 + 2i

)(
$ − 2i

$ + 2i

)
.

Let us denote by f
(B)
R,K the Bethe ansatz wavefunction for the formal state ||R,K;�〉. The

Bethe ansatz wavefunction of ||1, 2;�〉 is given by

f
(B)

1,2 (x1, x2, x3; k1, k2(�), k3(�)) = A123 exp i(k1x1 + k2(�)x2 + k3(�)x3)

+ A132 exp i(k1x1 + k3(�)x2 + k2(�)x3)

+ A213 exp i(k2(�)x1 + k1x2 + k3(�)x3)

+ A312 exp i(k3(�)x1 + k1x2 + k2(�)x3)

+ A231 exp i(k2(�)x1 + k3(�)x2 + k1x3)

+ A321 exp i(k3(�)x1 + k2(�)x2 + k1x3) for 1 � x1 < x2 < x3 � L (2.13)
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where k2(�) and k3(�) are given by

exp(ik2(�)) =
(

� + $/2 + i

� + $/2 − i

)
exp(ik3(�)) =

(
� − $/2 + i

� − $/2 − i

)
. (2.14)

Sending the centre � to infinity, � → ∞, we have k2 = k3 = 0 (mod)2π and

A123(∞) = A213(∞) = A231(∞) = 1
(2.15)

A132(∞) = A312(∞) = A321(∞) = $ − 2i

$ + 2i
.

Therefore, the limit of the Bethe ansatz wavefunction is given by

lim
�→∞

f
(B)

1,2 (x1, x2, x3; k1, k2(�), k3(�)) = C2
(
eik1x1 + eik1x2 + eik1x3

)
. (2.16)

where the constant C2 is given by

C2 =
(

1 +
$ − 2i

$ + 2i

)
. (2.17)

Combining equations (2.16) and (2.5), we obtain the following result:

lim
�→∞

||1, 2;�〉 = C2

∑
1�x1<x2<x3�L

(
eik1x1 + eik1x2 + eik1x3

)
σ−
x1
σ−
x2
σ−
x3

|0〉

= C2
1
2!

(
S−
tot

)2 |1〉 = C2 |1, 2〉. (2.18)

Thus, we have shown that the limit of the formal Bethe state ||1, 2;�〉 is equivalent to the
non-regular eigenstate |1, 2〉. We prove this equivalence for the general case in section 3.

Let us give some remarks on equation (2.18). We see that the limiting procedure depends
on the difference $. If $ = −2i, then the constant C2 becomes infinite. If $ = 0, then the
constant C2 vanishes. Thus, the limit of the wavefunction with infinite rapidities v2 and v3

depends on how we send them into infinity.

2.4. The PBCs for the limits of the formal Bethe states

The formal Bethe state ||R,K;�〉 satisfies the periodic boundary conditions (PBCs) after
taking the limit � → ∞. In fact, it is clear since the limit gives the non-regular eigenvector
|R,K〉, which satisfies the PBCs. Here we note that the total spin operator �Stot is translation
invariant. However, infinite rapidities do not always satisfy the Bethe ansatz equations.

For an illustration, let us consider the formal Bethe state ||1, 2;�〉. We denote by
f

(∞)

1,2 (x1, x2, x3) the limit of f (B)

1,2 (x1, x2, x3; k1, k2(�), k3(�)) with � sent to infinity. We see

that it satisfies the PBCs f
(∞)

1,2 (x1, x2, x3) = f
(∞)

1,2 (x2, x3, x1 + L) for 1 � x1 < x2 < x3 � L.
Explicitly we have

f
(∞)
1,2 (x2, x3, x1 + L) = 2$

$ + 2i

(
eik1x2 + eik1x3 + eik1(x1+L)

)
. (2.19)

Thus, it satisfies the PBCs if and only if the following holds:

exp(ik1L) = 1. (2.20)

This is nothing but the Bethe ansatz equation for k1, and it does hold from the assumption that
v1 is the rapidity of a regular eigenvector |1〉.

Now let us show that the additional rapidities do not necessarily satisfy the Bethe ansatz
equations, although the limiting Bethe ansatz wavefunction satisfies the PBCs. Let us consider
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the Bethe ansatz equations for three rapidities v1, v2 and v3(
v1 + i

v1 − i

)L

=
(

v1 − v2 + 2i

v1 − v2 − 2i

)(
v1 − v3 + 2i

v1 − v3 − 2i

)
(

v2 + i

v2 − i

)L

=
(

v2 − v1 + 2i

v2 − v1 − 2i

)(
v2 − v3 + 2i

v2 − v3 − 2i

)
(2.21)(

v3 + i

v3 − i

)L

=
(

v3 − v1 + 2i

v3 − v1 − 2i

)(
v3 − v2 + 2i

v3 − v2 − 2i

)
.

Taking the limit � → ∞, the three equations are reduced to(
v1 + i

v1 − i

)L

= 1 (2.22)

(
$ + 2i

$ − 2i

)
= 1. (2.23)

Equation (2.23) does not hold if $ takes a finite value; it holds only if |$| = ∞.

3. Proof of the limit of formal Bethe states

In this section we prove the theorem in the following.

Theorem 3.1. Let |R〉 be a regular Bethe ansatz eigenstate with R down-spins and rapidities
v1, . . . , vR . We recall that the symbol ||R,K;�〉 denotes the formal Bethe state with R + K

down-spins, which has the R rapidities v1, . . . , vR of |R〉 together with additional rapidities
vR+1(�), . . . , vR+K(�). Then, the non-regular eigenstate |R,K〉, which is a descendant of R,
is equivalent to the limit of the formal Bethe state ||R,K;�〉 with � sent to infinity:

lim
�→∞

||R,K;�〉 = CK |R,K〉. (3.1)

3.1. Derivation of the formula for amplitudes AM(P)’s

We now discuss the derivation of formula (2.10), which rewrites the amplitudes AM(P)’s
defined in (1.3). Let us recall that H(x) denote the Heaviside step function defined by
H(x) = 1 for x > 0, and H(x) = 0 otherwise. We show the following.

Lemma 3.1. Let P be an element of SM and v1, v2, . . . , vM be generic parameters. Then, the
following identity holds:∏

1�j<k�M

vPj − vPk + 2i

vj − vk + 2i
=

∏
1�j<k�M

(
vk − vj + 2i

vj − vk + 2i

)H(P−1j−P−1k)

. (3.2)

Proof. Let us take a pair of integers j and k with j < k and consider the factor vj − vk + 2i
in the denominator of LHS of equation (3.2). For the pair, there exist two integers � and m
such that P� = j, Pm = k. There are two cases either � < m or � > m. If � < m, we have
the factor vP� − vPm + 2i in the enumerator of the LHS of equation (3.2). Thus, the factors
associated with the rapidities vj and vk cancel each other. On the other hand, if � > m, we
have vPm − vP� + 2i in the enumerator of the LHS of equation (3.2) and

vPm − vP� + 2i

vj − vk + 2i
= vk − vj + 2i

vj − vk + 2i
. (3.3)
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We can express these results by(
vk − vj + 2i

vj − vk + 2i

)H(�−m)

.

Considering all the pairs j, k with j<k, we establish the equality (3.2).
�

Proposition 3.1. The amplitudeAM(P) defined by equation (1.3) forP ∈ SM can be expressed
as

AM(P) =
∏

1�j<k�M

(
vj − vk − 2i

vj − vk + 2i

)H(P−1j−P−1k)

(3.4)

Proof. The amplitude AM(P) defined by equation (1.3) is written in terms of rapidities as

AM(P) = ε(P )
∏

1�j<k�M

vPj − vPk + 2i

vj − vk + 2i
. (3.5)

In appendix B, we show the following identity in proposition B.1.

εM(P ) =
∏

1�j<k�M

(−1)H(P−1j−P−1k). (3.6)

Thus, making use of lemma 3.1 and proposition B.1, we obtain

AM(P) = ε(P )
∏

1�j<k�M

vPj − vPk + 2i

vj − vk + 2i
= ε(P )

∏
1�j<k�M

(
vk − vj + 2i

vj − vk + 2i

)H(P−1j−P−1k)

=
∏

1�j<k�M

(
vj − vk − 2i

vj − vk + 2i

)H(P−1j−P−1k)

. (3.7)

�

We give a remark. Using proposition 3.1, we can explicitly prove that the Bethe states
(and also the formal Bethe states) should vanish when there are two momenta of the same
value. The proof is given in appendix C.

3.2. Proof of the limit

Let us take a permutation P on R + K letters (P ∈ SR+K ). We consider the following set:

P−1{1, 2, . . . , R} = {P−1j | for j = 1, 2, . . . , R}. (3.8)

Let us denote the elements of the set by a1, a2, . . . , aR , where aj ’s are set in increasing order:
a1 < a2 < · · · < aR. For the permutation P, we introduce permutation PR on R letters by

PRm = Pam for m = 1, . . . , R. (3.9)

Then, we have the following.

Lemma 3.2. Let PR denote the permutation on R letters defined by (3.9) for a given
permutation P on R + K letters. For two integers j1 and j2 with 1 � j1, j2 � R, the
inequality P−1j1 < P−1j2 holds if and only if PR

−1j1 < PR
−1j2. Equivalently, we have

H
(
P−1j1 − P−1j2

) = H
(
PR

−1j1 − PR
−1j2

)
for 1 � j1, j2 � R. (3.10)
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Proof. Let us denote P−1j1 and P−1j2 by am1 and am2 , respectively. Then, by definition, we
have m1 = PR

−1j1 and m2 = PR
−1j2. Here we recall that aj ’s are set in increasing order.

Thus, we see that am1 < am2 if and only if m1 < m2, which gives the proof.
�

Similarly, let us introduce a permutation on K letters. We consider the following set:

P−1{R + 1, R + 2, . . . , R + K} = {P−1j | for j = R + 1, R + 2, . . . , R + K}. (3.11)

We denote by b1, b2, . . . , bK , the elements of the above set. Here we assume that bj ’s are
in increasing order: b1 < b2 < · · · < bK . We define permutation PK on K letters by the
following:

PKm = Pbm − R for m = 1, 2, . . . ,K. (3.12)

Then, we can show the following.

Lemma 3.3. Let PK denote the permutation on K letters defined by (3.12) for a given
permutation P on R + K letters. For two integers j1 and j2 with R + 1 � j1, j2 � R + K , the
inequality P−1j1 < P−1j2 holds if and only if PK

−1(j1 − R) < PK
−1(j2 −R). Equivalently,

we have

H
(
P−1j1 − P−1j2

) = H
(
PK

−1(j1 − R) − PK
−1(j2 − R)

)
for R + 1 � j1, j2 � R + K. (3.13)

Making use of lemmas 3.1–3.3, we now show the following proposition.

Proposition 3.2. Let us consider two positive integers R and K satisfying 0 < K � L − 2R.
Let v1, v2, . . . , vR be the rapidities of a given regular eigenvector |R〉 with R down-spins, and
vR+1(�), . . . , vR+K(�) be additional K rapidities which are given by vR+j (�) = � + δj for
j = 1, 2, . . . ,K . Here δj’s are arbitrary constants. For the Bethe ansatz wavefunction fR+K

with its amplitudes AR+K(P )’s given by (1.3), we have the limit

lim
�→∞

fR+K(x1, . . . , xR+K ; k1, . . . , kR, kR+1(�), . . . , kR+K(�))

= CK

∑
1�j1<···<jR�R+K

fR(xj1 , . . . , xjR , k1, . . . , kR). (3.14)

Here kj’s are related to the rapidities vj’s through the relation exp ikj = (vj + i)/(vj − i), and
the constant CK is given by

CK =
∑
P∈SK

AK(P ) [δ1, . . . , δK ] . (3.15)

Proof. We recall that the Bethe ansatz wavefunction fR+K is given by

f (x1, . . . , xR+K) =
∑

P∈SR+K

AR+K(P ) exp

(
i
R+K∑
j=1

kPjxj

)
. (3.16)

Let us take a permutation P in SR+K . By lemma 3.2 we can show that the amplitude AR+K(P )

of the formal Bethe state is given by

AR+K(P ) [v1, . . . , vR, vR+1(�), . . . , vR+K(�)] =
∏

1�j<��R+K

(
vj − v� − 2i

vj − v� + 2i

)H(P−1j−P−1�)

.

(3.17)



Non-regular eigenstate of the XXX model as some limit of the Bethe state 9765

The above product can be decomposed into three parts in the following:∏
1�j<��R+K

(
vj − v� − 2i

vj − v� + 2i

)H(P−1j−P−1�)

=
∏

1�j<��R

(
vj − v� − 2i

vj − v� + 2i

)H(P−1j−P−1�)

×
∏

1�j�R

∏
R+1���R+K

(
vj − v� − 2i

vj − v� + 2i

)H(P−1j−P−1�)

×
∏

R+1�j<��R+K

(
vj − v� − 2i

vj − v� + 2i

)H(P−1j−P−1�)

. (3.18)

First, we consider the third part of the RHS of (3.18). Making use of lemma 3.3, we have∏
R+1�j<��R+K

(
vj − v� − 2i

vj − v� + 2i

)H(P−1j−P−1�)

=
∏

1�j<��K

(
vj+R − v�+R − 2i

vj+R − v�+R + 2i

)H(P−1
K j−P−1

K �)

=
∏

1�j<��K

(
δj − δ� − 2i

δj − δ� + 2i

)H(P−1
K j−P−1

K �)

. (3.19)

We note that the RHS of (3.19) is nothing but AK(PK) [δ1, . . . , δK ]. Second, it is clear that
the second part of the RHS of (3.18) becomes 1 under the limit � → ∞. In fact, putting the
additional rapidities into the second part of the RHS of (3.18), we have∏
1�j�R

∏
R+1���R+K

(
vj − v� − 2i

vj − v� + 2i

)H(P−1j−P−1�)

=
∏

1�j�R

∏
R+1���R+K

(
vj − � − δ� − 2i

vj − � − δ� + 2i

)H(P−1j−P−1�)

. (3.20)

Third, we consider the first part of the RHS of (3.18). We recall that PR is defined for the
given permutation P by the relation (3.9). Then, from lemma 3.2, we have∏
1�j<��R

(
vj − v� − 2i

vj − v� + 2i

)H(P−1j−P−1�)

=
∏

1�j<��R

(
vj − v� − 2i

vj − v� + 2i

)H(PR
−1j−PR

−1�)

. (3.21)

We note again that the RHS of (3.21) is equal to AR(PR) [v1, . . . , vR]. Thus, we have

lim
�→∞

AP+K(P ) [v1, . . . , vR, vR+1(�), . . . , vR+K(�)]

= AR(PR) [v1, . . . , vR] × AK(PK) [δ1, . . . , δK ] . (3.22)

Let us now consider the exponential part of (3.16). We note the following:
R+K∑
j=1

kPjxj =
R+K∑
�=1

k�xP−1� =
R∑

�=1

k�xP−1� +
R+K∑

�=R+1

k�xP−1�. (3.23)

Since kR+1, · · · , kR+K are approaching to 0 (mod 2π) in the limit of sending � to infinity, we
have

lim
�→∞

R+K∑
�=R+1

k�(�)xP−1� = 0 (mod 2π). (3.24)

Making use of the relation PRm = Pam, we have
R∑

�=1

k�xP−1� =
R∑

m=1

kPRmxP−1PRm =
R∑

m=1

kPRmxam
. (3.25)
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Thus, we have

lim
�→∞

AR+K(P ) exp

(
R+K∑
j=1

kPjxj

)
= AK(PK) [δ1, . . . , δK ]

×AR(PR) [v1, . . . , vR] exp

(
R∑

m=1

kPRmxam

)
for P ∈ SR+K. (3.26)

Finally, we give a remark. To pick up a permutation P on R + K letters is equivalent to
doing the procedures in the following: we take a subset {a1, a2, . . . , aR} of the set of R + K
letters 1, 2, . . . , R + K and specify PR on R letters and PK on K letters by (3.9) and (3.12),
respectively. Therefore, we have∑

P∈SR+K

=
∑

{a1,...,aR }⊂{1,2,...,R+K}

∑
PR∈SR

∑
PK∈SK

. (3.27)

Thus, we have the relation (3.14), where am’s correspond to jm’s.
�

It is now clear that we obtain theorem 3.1 from proposition 3.2.

4. Some related topics

4.1. Formal Bethe state and the algebraic Bethe ansatz

Let us explicitly review the connection of the formal Bethe state to the algebraic Bethe
ansatz: the formal Bethe state ||M〉 corresponds to the vector B(λ1) · · ·B(λM)|0〉 with generic
rapidities λ1, . . . , λM . We can define the formal Bethe state also by the algebraic Bethe ansatz
method. Here B(λ) denotes the creation operator of the algebraic Bethe ansatz [18, 19].

Let us introduce the symbol fjk = (λj − λk − 2η)/(λj − λk) with η = −i. Then,
applying the method of the generalized two-site model [18–20], we can show
M∏

j=1

B(λj )|0〉 = F1({λj })
∑
P∈SM

∑
1�x1<···<xM�L

M∏
j=1

σ−
xj

|0〉

×
( ∏

1�α<β�M

fPk Pm

)
exp

(
i

M∑
j=1

kPjxj

)
. (4.1)

where F1({λj }) is given by F1({λj }) = (2η)M
∏M

j=1(λj − i)L/(λj + i). We note that the
factors

∏
1�j<k�M fPj P k are related to the amplitudes of the Bethe ansatz wavefunctions as

∏
1�j<k�M

fPj P k =
( ∏

1�j<k�M

fjk

) ∏
1�j<k�M

(
λj − λk + 2η

λj − λk − 2η

)H(P−1j−P−1k)

. (4.2)

Making use of (4.2), we have the connection

B(λ1) · · ·B(λM)|0〉 = ||M〉 × F1({λj })F2({λj }) (4.3)

where F2({λj }) = ∏
1�j<k�M fjk . Thus, the formal Bethe state introduced in equation (1.4)

in terms of the coordinate Bethe ansatz method is equivalent to the Bethe vector with generic
rapidities of the algebraic Bethe ansatz.

We note that the derivation of (4.1) for the cases M = 1 and M = 2 has been discussed
explicitly in [9, 11]. A similar relation with (4.1) has also been derived for the algebraic Bethe
ansatz of the elliptic quantum group [21].
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4.2. Spectral flow under the twisted BCs

We show briefly that the infinite limit of the formal Bethe state is closely related to the spectral
flow under the twisted boundary conditions (TBCs).

Let us consider the XXX Hamiltonian (1.1) for the antiferromagnetic case (J < 0) under
the twisted boundary conditions σ±

L+1 = σ±
1 exp(±i.), σ z

L+1 = σ z
1 . Here the variable . is

called the twisting parameter. The Bethe ansatz equations under the TBCs [22–28] for real
momenta pj ’s are given by

Lpj = 2πIj + . −
M∑

�=1,��=j

1(pj , p�) for j = 1, . . . ,M. (4.4)

Here Ij = (M − 1)/2 (mod 1), and the function 1(p, q) is given by [5]

1(p, q) = 2 tan−1

(
(−1) sin((p − q)/2)

cos((p + q)/2) − (−1) cos((p − q)/2)

)
. (4.5)

When −π < pj < π for j = 1, . . . ,M , we may assume that the Ij ’s satisfy |Ij | � T1 =
(L − M − 1)/2 for j = 1, . . . ,M . The inequalities have been derived under some physical
assumptions [13, 29]. Here we note that for the antiferromagnetic case, we call momentum k
regular when −π < k < π .

Let us now consider the case where one of the momenta is very close to −π , i.e., we
assume that p0 = −π + ε with a very small positive number ε. Then, through the expansion

1(−π + ε, q) = π − 2ε + ε2 tan
q

2
+ O(ε3) (4.6)

we can show that I0 = −(L − M + 1)/2 = −T1 − 1 and ε = ./(L − 2M + 2) + O(ε2). The
solution p0 = −π + ./(L − 2M + 2) + O(ε2) can be considered as a regular solution, since
it satisfies the condition −π < p0 < π . Furthermore, it is clear that p0 comes close to −π

when . → 0 with . > 0. Thus, the formal solution p0 = −π for . = 0 corresponds to the
regular solution p0 = −π + ./(L − 2M + 2) + O(ε2) when 0 < . � 1.

We observe the increase by one for the number of solutions to equations (4.4): there are
2T1 + 1 regular solutions under the PBCs, while we have 2T1 + 2 regular solutions under the
TBCs.

Let us introduce an extension of the function 1(p, q) of the variable p defined on the
range (−π, π) into a continuous function defined over (−∞, ∞) as follows:

5(p, q) =



−(2n + 1)π if p = (2n + 1)π for an integern

1
(
p − 2π

[
p +π

2π

]
, q
)

− 2π
[
p + π

2π

]
otherwise.

(4.7)

Here the symbol [,] denotes the Gauss symbol. We also extend the function 1(p, q) with
respect to q through the relation 1(p, q) = −1(q, p). In terms of the extended function, the
Bethe ansatz equations are given by

Lpj = 2πIj + . −
M∑

�=1,��=j

5(pj , p�) for j = 1, . . . ,M (4.8)

where Ij’s satisfy Ij = (M − 1)/2 (mod 1). We note that for regular solutions which satisfy
−π < pj < π , equations (4.8) are equivalent to the standard Bethe ansatz equations (4.4).

We now show that the number L−M + 1 gives the period of the quantum numbers Ij’s.
If we increase by 2π the value of a momentum, say pj1 , then through equations (4.8) we can
show the changes of Ij’s in the following

Ij1 → Ij1 + L − M + 1 and Ij → Ij + 1 for j �= j1 (1 � j � M). (4.9)
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Thus, we may consider only L − M + 1 different values for Ij’s such as −T1 − 1, −T1, . . . , T1.
Let us derive the 4π period of the spectral flow under the TBCs with respect to

the twisting parameter . for the state which gives the ground state at . = 0. Here
we note that the 4π period of the spectral flow has been numerically shown in several
papers [24–28]. We first recall that under zero magnetic field, the ground state under
the PBCs is given by the half-filling case: M = L/2. Then, we have 2T1 + 1 = L/2,
and we have a unique set of real solutions k1, . . . , kL/2 corresponding to I1, . . . , IL/2 with
Ij = −T1 + j − 1 for j = 1, . . . , L/2. Let us assume that pj (.)’s are solutions to
equations (4.8) where pj (0) = kj for j = 1, . . . , L/2. Then, increasing the parameter
. adiabatically from 0 to 4π , using equations (4.8), (4.6) and (4.9), we can show that
pL/2(4π) − 2π = p1(0), p1(4π) = p2(0), . . . , p(L−2)/2(4π) = pL/2(0). For an illustration,
let us consider the case of L = 6 and M = 3. When .= 0, we have I1 = −1, I2 = 0, and I3 = 1.
Increasing the parameter . from 0 to 4π , we have I1 = 1, I2 = 2 and I3 = 3. Replacing p3

with p3 − 2π , we have the changes of Ij’s such as those shown in equations (4.9), and we
obtain I3 = −1, I1 = 0 and I2 = 1. Here we note that the period L − M + 1 is given by 6 −3 +
1 = 4. Thus, the set of momenta for . = 4π is equivalent to that of . = 0. Therefore, we
conclude that the set of momenta pj(.)’s, which gives the ground state solutions at . = 0, has
the period of 4π for its spectral flow with respect to the parameter ..

5. Discussions

In this paper, we have explicitly shown that any non-regular eigenvector is derived from the
Bethe ansatz wavefunction with infinite rapidities, for the one-dimensional XXX model under
the periodic boundary conditions. Formula (2.10) for the amplitudes of the Bethe ansatz
wavefunction has played a central role in the proof.

Let us explicitly consider the string hypothesis. It is based on the assumption that the
Bethe ansatz equations (2.8) have complex solutions given in the following:

vn,j
α = vn

α + i(n + 1 − 2j) + εn,j
α for j = 1, . . . , n. (5.1)

Here, it is also assumed that the absolute values of the correction terms |εn,j
α | should be very

small. The set of complex rapidities v
n,j
α for j = 1, . . . , n is called an n-string solution

[1, 13, 14]. The value vn
α is called the centre of the string solution. The number n is called the

length of the string solution.
Let us discuss formula (2.10) of the amplitudes from the viewpoint of the string hypothesis.

For any given n-string solution, we set the n rapidities in the string in such an order that
v
n,j
α − vn,k

α ≈ 2i(k − j) for any j < k with 1 � j, k � n. Then, the value of the amplitude
AM(P) given by equation (2.10) becomes stabilized and well-defined, since we can avoid the
appearance of any very small factor of O(ε) in the denominator of equation (2.10).

Let us discuss the number of solutions to the Bethe ansatz equations for the strings of
length n [1, 13, 14, 29]. Let us define number Tn by

Tn = 1

2

(
N − 1 −

∞∑
m=1

tnmMm

)
. (5.2)

Here Mm denotes the number of string solutions of length m and tnm is given by

tnm = 2 min(n,m) − δnm.

Under the periodic boundary conditions (. = 0), it is discussed that the number of string
solutions of length n is given by 2Tn + 1 [13, 14]. We can show that if there are 2Tn + 2
different string solutions of length n, then all the solutions to the Bethe ansatz equations
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correspond to a complete set of the eigenvectors of the XXX Hamiltonian under the twisted
boundary conditions. The result of the present paper suggests that the K infinite rapidities of
a non-regular eigenvector |R,K〉 might correspond to a K-string solution under the twisted
boundary conditions. Thus, we have a conjecture that any non-regular eigenvector under the
PBCs of the form |R,K〉 should correspond to a regular eigenvector with a K-string solution
under the twisted BCs. It seems that the conjecture should be consistent with the result of
[17]. However, a detailed numerical research on K-string with large K’s should be performed
such as that studied in [30].

Finally, we give a remark on a possible application of the result of the present paper to the
XXZ and XYZ models. Recently, it has been shown that under the periodic boundary conditions,
the one-dimensional XXZ Hamiltonian at the q root of unity conditions has the sl2 loop algebra
symmetry [31–33]. In fact, we can discuss the spectral degeneracy of the XXZ model at the
root of unity conditions in terms of the algebraic Bethe ansatz method by applying some of
the techniques developed in the paper: combining the expression analogous to equation (4.1)
with the formula of the amplitudes AM(P)’s similar to equation (4.2), we can construct
singular solutions related to the sl2 loop algebra [34]. Thus, we can show the validity of the
construction of the complete N-string solutions discussed in [33] in the level of eigenvectors.
We can also prove it by showing that the limits of the Bethe ansatz wavefunctions satisfy
sufficient conditions for the eigenvectors of the XXZ model. Surprisingly, a similar method
can also be applied to the analysis of the spectral degeneracy of the XYZ model addressed in
[31]. The details will be discussed in subsequent papers [34].
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Appendix A. Formula for the action of spin-lowering operator

Let us introduce some symbols. First, we abbreviate the symbol
∑

1�x1<···<xM�L as
∑∼

x1<···<xM
.

Second, for a non-negative integer K, we denote by the symbol
∑

{j1,j2,...,jM }⊂{1,...,M+K} the
summation over all the subsets {j1, j2, . . . , jM } of {1, 2, . . . ,M + K}, where jk’s are set in
increasing order j1 < · · · < jM . Thus, the two symbols in the following express the same
sum: ∑

{j1,...,jM }⊂{1,...,M+K}
=

∑
1�j1<···<jM�M+K

. (A.1)

Proposition A.1. Recall that |M) denotes an arbitrary vector with M down-spins defined by
equation (2.3). We denote by |M,K) the vector obtained from |M) multiplied by the power of
the spin-lowering operator:

|M,K) = 1

K!

(
S−
tot

)K |M). (A.2)
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Then, we can show the following formula:

|M,K) =
∼∑

x1<···<xM+K

( ∑
{j1,...,jM }⊂{1,...,M+K}

g(xj1 , . . . , xjM )

)
σ−
x1
σ−
x2

· · · σ−
xM+K

|0〉. (A.3)

Proof. We prove the formula (A.3) by induction on K.

(i) We show (A.3) for the case K = 1. Applying S−
tot to |M), we have

S−
tot |M) =

L∑
y=1

σ−
y

∑
x1<···<xM

g(x1, . . . , xM)σ−
x1

· · · σ−
xM

|0〉

=
∼∑

x1<···<xM

(
y<x1∑
y=1

+
y<x2∑
y>x1

+ · · · +
L∑

y>xM

)
g(x1, . . . , xM)σ−

y σ−
x1

· · ·σ−
xM

|0〉.

(A.4)

We note the following calculation:
∼∑

x1<···<xM

y<xj+1∑
y>xj

g(x1, . . . , xM)σ−
y σ−

x1
· · · σ−

xM

=
∼∑

x1<···<xj<y<xj+1<···>xM

g(x1, . . . , xM)σ−
x1

· · · σ−
xj
σ−
y σ−

xj+1
· · · σ−

xM

=
∼∑

x1<···<xM+1

g(x1, . . . , xj , xj+2, . . . , xM+1︸ ︷︷ ︸
(j+1)th,...,M th

)σ−
x1

· · · σ−
xM+1

. (A.5)

In the last line, we have replaced the symbols y, xj+1, . . . and xM by xj+1,
xj+2, . . . and xM+1, respectively. Substituting (A.5) into (A.4), we have

S−
tot |M) =

∼∑
x1<···<xM+1

(
g(x2, . . . , xM+1) + g(x1, x3, . . . , xM+1)

+ · · · + g(x1, x2, . . . , xM)
)
σ−
x1

· · · σ−
xM+1

|0〉

=
∼∑

x1<···<xM+1

( ∑
{j1,...,jM }⊂{1,2,...,M+1}

g(xj1 , . . . , xjM )

)
σ−
x1

· · · σ−
xM+1

|0〉.

(A.6)

Thus, we have the expression (A.3) for the case K = 1.
(ii) Let us assume the expression (A.3) for the case K. Then, we show the case K + 1 in the

following:

S−
tot |M,K) =

L∑
y=1

σ−
y

( ∑
x1<···<xM+K

∑
{j1,...,jM }⊂{1,...,M+K}

g(xj1 , . . . , xjM )σ
−
x1

· · · σ−
M+K

)
|0〉

=
∼∑

x1<···<xM+K

(
y<x1∑
y=1

+
y<x2∑
y>x1

+ · · · +
L∑

y>xM+K

)

×
∑

{j1···jM }⊂{1,...,M+K}
g(xj1 , . . . , xjM )σ

−
y σ−

x1
· · ·σ−

xM+K
|0〉. (A.7)
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By a similar method for case (i), we can show the following:
∼∑

x1<···<xM+K

y<x�+1∑
y>x�

∑
{j1,...,jM }⊂{1,...,M+K}

g(xj1 , . . . , xjM ) σ−
y σ−

x1
· · · σ−

xM

=
∼∑

x1<···<x�<y<x�+1<···<xM+K

∑
{j1,...,jM }⊂{1,...,M+K}

g(xj1 , . . . , xjM )σ
−
x1

· · · σ−
x�
σ−
y σ−

x�+1
· · · σ−

xM

=
∼∑

x1<···<xM+K+1

∑
{j1,...,jM }⊂{1,...,�,�+2,...,M+K+1}

g(xj1 , . . . , xjM )σ
−
x1

· · · σ−
xM+1

. (A.8)

In the last line, we have replaced the symbol y by x�+1 and � + 1, . . . ,M by
� + 2, . . . ,M + 1. Substituting (A.8) into (A.7), we have

S−
tot |M,K)

=
∼∑

x1<···<xM+K+1

( ∑
{j1,...,jM }⊂{2,3,...,M+K+1}

+
∑

{j1,···,jM }⊂{1,3,...,M+K+1}
+ · · · +

∑
{j1,...,jM }⊂{1,2,...,M+K}

)

×g(xj1 , . . . , xjM )σ
−
x1

· · · σ−
xM+K+1

|0〉

= (K + 1)
∼∑

x1<···<xM+K+1

( ∑
{j1,...,jM }⊂{1,2,...,M+K+1}

g(xj1 , . . . , xjM )

)
σ−
x1

· · · σ−
xM+1

|0〉. (A.9)

In the derivation of the last line, we note that after selecting M integers j1, j2, . . . , jM
from the set {1, 2, . . . ,M + K + 1}, there are (K + 1) ways of choosing one more element
from the remaining K + 1 integers. Thus, we have the factor (K + 1). �

Appendix B. Some useful properties of the symmetric group

We introduce some notation of the symmetric group [36]. Let M be a positive integer. We
consider the permutation group SM of integers 1, 2, . . . ,M . Take an element P of SM. We
denote the action of P on j by Pj for j = 1, . . . ,M . Let us introduce the symbol (i1i2 · · · ir )
of the cyclic permutation where ij is sent to ij+1 for j = 1, . . . , r − 1 and ir is sent to i1. It is
known [36] that any permutation P can be decomposed into a product of disjoint cycles,

P = (i1i2 · · · ir )(j1j2 · · · js) · · · (�1�2 · · · �u). (B.1)

Here, any two of the cycles share no letter (or integer) in common. The factorization (B.1) is
unique except for order of the factors [36].

For a given permutation P with a factorization of disjoint cycles such as equation (B.1),
we denote by N(P) the sum (r−1)+(s−1)+ · · · +(u−1). Then, we can show that the parity of
the permutation P is equal to that of N(P). Hereafter, we shall denote by the expression a ≡ b

(mod 2) that integers a and b have the same parity. We first recall that the cycle (i1i2 · · · ir )
can be written as the product of r1 transpositions,

(i1i2 · · · ir ) = (i1ir )(i1ir−1) · · · (i1i2).
Thus, the parity of the cycle same as that of r−1. Let us denote by the symbol ε(P) the sign
of permutation P. Then, we have [36]

ε(P ) = (−1)(r−1)+(s−1)+···+(u−1) = (−1)N(P ). (B.2)

Let us introduce ordered pairs of integers. We take two different integers j and k and
consider an ordered pair 〈j, k〉. We distinguish 〈j, k〉 from 〈k, j 〉. Let us consider the action
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of a permutation on ordered pairs. We take a permutation P of SM and two integers j and k
satisfying 1 � j < k � M . We denote by 〈Pj, Pk〉 the action of P on the pair 〈j, k〉. If
Pj > Pk, we call that the pair 〈j, k〉 is transposed by P.

Let the symbol T(P) denote the number of all such pairs, 〈j, k〉, that are transposed by P
among all the ordered pairs 〈j, k〉 with the condition 1 � j < k � M . Then, we can show the
following.

Lemma B.1. The parity of an element P of SM is equivalent to that of the number T(P):

N(P) ≡ T (P ) (mod 2). (B.3)

Proof. We now prove the lemma based on induction on M of SM. It is easy to see that when
M = 2 the statement is true. Let us now assume that equation (B.3) holds for all permutations
P of SR if R < M. Let us take an element P of SM. Then, we may assume that the permutation P
has a factorization of disjoint cycles such as that shown in equation (B.1). Suppose that P
has the same factorization with equation (B.1). We take a cycle (i1i2 · · · ir ), which is one of
the disjoint cycles, and we denote by B the set {i1, i2, . . . , ir }. We also denote by ;M the set
of M integers: ;M = {1, 2, . . . ,M}. We now consider the subset A of the set ;M that is
complementary to the set B: A = ;M − B. We define permutation PA by

PA = (j1j2 · · · js) · · · (�1�2 · · · �u). (B.4)

Note that PA is a permutation of A and it does not change any letter in B: PAij = ij for j =
1, . . . , r . Thus, we see that T(P) and T (PA)+ (r −1) have the same parity. Here, we can show
that T ((i1i2 · · · ir )) ≡ r − 1 (mod 2) by noting that T ((ab)) = 2(b − a − 1)+1 when a < b.
On the other hand, since PA is a permutation of A, it is equivalent to an element of SM−r .
From the induction hypothesis, we have that N(PA) and T (PA) have the same parity. Thus,
we have

T (P ) ≡ T (PA) + (r − 1) (mod2)

≡ N(PA) + (r − 1) (mod2)

= N(P).

Therefore, T(P) and N(P) have the same parity.
�

We now have the following.

Proposition B.1. Let P be an element of SM. Then, we have the following identity:

ε(P ) =
∏

1�j<k�M

(−1)H(P−1j−P−1k). (B.5)

Proof. Let us note the following:

T (P ) =
∑

1�j<k�M

H(P−1j − P−1k). (B.6)

Then, we can show equation (B.5) from the previous lemma and equation (B.2).
�

Appendix C. Proof of the ‘Pauli principle’

We give a simple proof for the ‘Pauli principle’ of the Bethe ansatz that when there are two
rapidities of the same value, then the Bethe ansatz wavefunction of the XXX model vanishes.
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We note that it is also proven by the algebraic Bethe ansatz method in [19]. However, the
proof in this appendix is much more elementary; it is only based on the expression (2.10)
of the amplitudes AM(P)’s. In this appendix, we assume that rapidities v1 . . . , vM are free
parameters.

Let us take a pair of integers a and b such that 1 � a < b � M . Then, we show that the
Bethe ansatz wavefunction f

(B)
M with the amplitudes defined by equation (1.3) (equivalently

by equation (2.10)) vanishes if ka = kb (i.e. va = vb). Let the symbol (ab) denote the
permutation between a and b. Then, we have

f
(B)
M (x1, . . . , xM; k1, . . . , kM) =

∑
P∈SM

AM(P) exp

(
i

M∑
j=1

kPjxj

)

= 1

2

∑
P∈SM

AM(P) exp

(
i

M∑
j=1

kPjxj

)

+
1

2

∑
P∈SM

A((ab)P ) exp

(
i

M∑
j=1

k((ab)P )jxj

)
. (C.1)

Here we have replaced P by (ab)P in the second term. Considering the cases when j = P−1a

and j = P−1b, we can show that

M∑
j=1

kPjxj = kaxP−1a + kbxP−1b +
M∑

j=1;j �=P−1a,P−1b

kPjxj (C.2)

M∑
j=1

k((ab)P )jxj = k(ab)axP−1a + k(ab)bxP−1b +
M∑

j=1;j �=P−1a,P−1b

k(ab)Pjxj

= kbxP−1a + kaxP−1b +
M∑

j=1;j �=P−1a,P−1b

kPjxj (C.3)

When ka = kb = k, we have

f
(B)
M (x1, . . . , xM; k1, . . . , kM) = 1

2

∑
P∈SM

(AM(P ) + AM((ab)P )))

× exp

(
ik(xP−1a + xP−1b) + i

M∑
j=1;j �=P−1a,P−1b

kPjxj

)
. (C.4)

We now show that AM(P) + AM((ab)P ) = 0 for any P ∈ SM . Here we introduce the
following symbols:

e(j, k) = vj − vk − 2i

vj − vk + 2i
H(j, k;P) = H(P−1j − P−1 k). (C.5)

Then, the amplitude AM(P) given by equation (2.10) is expressed as

AM(P) =
∏

1�j<k�M

e(j, k)H(j,k;P ). (C.6)

Let us consider the six cases for the integers j and k in the above product: j = a and
k = b; j < a and k = a; j < b and k = b, where j �= a; j = b and k > b; j = a and k > a, where



9774 T Deguchi

k �= b; j �= a and k �= b. We have the following:

AM(P) = e(a, b)H(a,b;P )

a−1∏
j=1

e(j, a)H(j,a;P )

b−1∏
j=1;j �=a

e(j, b)H(j,b;P )

M∏
k=b+1

e(b, k)H(b,k;P )

×
M∏

k=a+1;k �=b

e(a, k)H(a,k;P )
∏

1�j<k�M;j,k �=a,b

e(j, k)H(j,k;P )

= e(a, a)H(a,b;P )

a−1∏
j=1

e(j, a)H(j,a;P )+H(j,b;P )

b−1∏
j=a+1

e(j, a)H(j,b;P )

×
M∏

j=b+1

e(a, j)H(b,j;P )+H(a,j;P )

b−1∏
j=a+1

e(a, j)H(a,j;P )

×
∏

1�j<k�M;j,k �=a,b

e(j, k)H(j,k;P ) = (−1)H(a,b;P )

b−1∏
j=a+1

e(a, j)H(a,j;P )−H(j,b;P )

×
∏

1�j<k�M;j,k �=a,b

e(j, k)H(j,k;P )

a−1∏
j=1

e(j, a)H(j,a;P )+H(j,b;P )

×
M∏

j=b+1

e(a, j)H(b,j;P )+H(a,j;P ). (C.7)

Here we have used the relations e(j, a) = e(j, b), e(a, j) = 1/e(j, a), e(a, b) =
e(a, a) = −1, and so on. In a similar way, we have

AM((ab)P ) = (−1)H(b,a;P )

b−1∏
j=a+1

e(a, j)H(b,j;P )−H(j,a;P ) ×
∏

1�j<k�M;j,k �=a,b

e(j, k)H(j,k;P )

×
a−1∏
j=1

e(j, a)H(j,a;P )+H(j,b;P )

M∏
j=b+1

e(a, j)H(b,j;P )+H(a,j;P ). (C.8)

Noting the relation H(j, k;P) − 1/2 = −(H(k, j ;P) − 1/2), we can show that

H(a, j ;P) − H(j, b;P) = H(P−1a − P−1j) − H(P−1j − P−1b)

= −H(−P−1a + P−1j) + H(−P−1j + P−1b)

= −H(j, a;P) + H(b, j ;P). (C.9)

Thus, we have

AM(P) + AM((ab)P ) = (
(−1)H(a,b;P ) + (−1)H(b,a;P )

) b−1∏
j=a+1

e(a, j)H(a,j;P )−H(j,b;P )

×
a−1∏
j=1

e(j, a)H(j,a;P )+H(j,b;P )

M∏
j=b+1

e(a, j)H(a,j;P )+H(b,j;P )

×
∏

1�j<k�M;j,k �=a,b

e(j, k)H(j,k;P ) (C.10)

and we obtain

AM(P) + AM((ab)P ) = 0 for any P ∈ SM. (C.11)
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Here we note the following: H(b, a;P) = 0 when H(a, b;P) = 1; H(b, a;P) = 1 when
H(a, b;P) = 0.

Following the discussion in the appendix, we can show the Pauli principle of the
Bethe ansatz also for the XXZ model; we redefine e(j, k) by e(j, k) = sinh(vj − vk + 2η)/
sinh(vj − vk − 2η), where η is related to the anisotropy parameter $ by $ = cosh 2η.
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